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Motivation: Understanding Human Behavior in 3D

.

* Anticipatory action vs. perceptual reaction k “; '

* Human environments are made by humans for humans b~

=
LI Y »_A
* Human behavior understanding is important for perception ‘-ﬂ | i:@“;’
* Higher-order understanding of human-machine interaction J ‘Hﬂ}‘iﬂv

Move a

* Human motion generation in 3D square table _/

* Allows for more fine-grained actions, e.g., grasping objects

* Enables direct interactions with an environment



Applications

* Human-centered assistive systems

* Interaction between humans and robots in a shared physical space
* Assistance robotics in medicine and care

* Autonomous driving

* Forecasting interactions between cars & pedestrians

e Content Creation

* Plausible human motion from sparse input (e.g., text)



3D Human Behavior Generation: Action & Interaction

Efficient Action Representation Complex Action Sequences

FutureHuman3D: Forecasting Complex Long-Term

Human-0Object Interactions
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Abstract method, we construct a dataset of manually ansotated char.
acterisslc 3d poses. Owr experiments with this dasaset sug-
gear thal ewr propased probebi
stave.of the-art methods by 269

e approsch owiperfarms
We propose the tush of forecasting chanscterissie 3d apprvach fupe

posex; from @ short sequence observation of & persow,
predict @ farwre 3d pose of that persos In a lkely actios.
defiming. characterissic pose - for instance. from cbserving 1 yoo g pen

a person picking up an apple, predict the pose of the per-

om average.

som eating the apple. Prior work on human motion predic Futere burman pose forecasting is fundimestal wwards 3
thow essimates future poses ot fised tme inservals. Althowgh  compeehensive understanding of heman bebavior, and coa-
cary fo define, this frame-by-frome formudation confounds  sequenly towands ackicving higher-devel perveption in ma
temporal and insentional aspects of human acson. Instead,  chine interactions with hamanx, such i autonomoe

we define a sementically meaningll pose prediction lask  or vehicles. In face, prediction is considered to play a fova-
thar decouples the predicted pose from time. taking inspire.  dational part i imselligesce (1, 11, | 5). In particelar, pre
thom from goul-direcied behavion. To predict charscterissic  dicing the 3 pose of & lwasse in the future lays o basis
poses, we propase @ probabiliviic approack that medels the for both sractursl sad semantic waderstiunding of human
possible multi-modaliy in the distribution of likely char.  behavior, and for an agest to take fine-graimed anticipatory
acteristic poses, We then sample fieture pose kypotheses  action towards the forecasted fuire. For example, a robotic
from the predicted distrbunion in an autoregressive fash- surgical assistant shoald predict in advance where best 1o
iom 10 model dependencies between joints. To evaluate owr  plisce & ol 1o assist the surpeca’s Bext action, whal sensor

Forecasting Characteristic 3D Poses [1]

[1] Diller, Christian, Thomas Funkhouser, and Angela Dai. "Forecasting characteristic 3d poses of human actions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

3D Human Behavior from Video Observations

Christian Diller Thomas Funkhouser Angela Dai
Technical University of Munich Google Technical University of Munich

ot as11 tfunkhousersgoagle. con 1a.datezem. e

[y — g Toem Fotare Prodicion » Sepeence of 3D Powes i Action Labels

o0 Labels

» - P - A -~

AR AN / |
r LT JO || TS\ Y )| ¢ UGN

po— - v— - - -

werponstwo |

Figrure 1. We propose a novel pmerative approach 1o model long ters feture bumas behavior by jintly fomecastng a seqaesce of coane

wtiom Wbl and fhese com

saparvision sed pest shury

Abstract

We present a generative approuch to forecust long-term
future: husman beavior 3D, requiring only weak super-
vision from readily avaikable 2D human oction deta. This
ndamental tatk enabling many dowstream applice.
Tioms, The requined grovend-1ruth duta is hard 1o capere in
3D (macap eaits, expentive setups) but easy o aequire in
2D (simple RGB camerss). Thus, we design our method
10 omly require 2D RGD date while being able 10 generate
3D human mothon sequences. We use o dffereniable 20
projection scheme in an autoregressive manner for weak
supervision. and an adversarial loss for 31D regwlarizanion
Our method predicts long and complet beharior veguencer
(e.5. coobing, assembly) consisting of multiple sub-actions
We auckle this in & semantically hien
prediciing bigh-level coarse action kabels togesher witk thes
Tow-level fine-grained realications as characieristic 30 ha-
man pases. We abserve that these two acrion represensarians
are compled in mature, and joint prediction besefits bork ac-

fion and pore forecasting. Owr experiments demonsirate
the complementary natire of joint action and 3D pose pre
rans each sust sreated

an owr foint appreich outpers
exabdies robast Loeger-ten
s ailie ative appeoeches o forecast octions
and characterissic 3D peses.

sequence predicrion,
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1. Introduction

chine inielligence, with many spplications = costent cre
100, (0boacs, mixed realty, and more, For instaace, &
momitoring system might issue early wamizgs of potentially

dangorows bedavioar, and a robo o can use fore-
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be neaded i the feture. Comsider the specific scenario of
 assaably L mooitoring sysices depluyed Lo lssue carly
wamnings of behavior thix could be barmésl in the near fumire:
The sysican soeds 1 bave & long-term uaderstanding of the
fature. evabling it 1o forecast multiple action steps abead =
hat it can st in tme before & harmbel scton occers. How-
ever, simmply understimding the next sction seps on 3 kigh
level s not sufficient it must also reason abost where the
sction will oceur. Activas sech s “grab 3 tool” are likely
harmless whes performed in & toolbox, Sy become danger-
ous when dome next 10 n active (able saw o moving robot
. The monitecing system thas also nesds 1o be able 10
reason about spatial relations in 3D — for both e lo
2 body pose of isvelved Bemans

55

To support these types of applications, we must addsess
two tasks: 1) forecasting kong-term actien sequences, and 2)
prodicting future 31D humam poses. Prior work has focused on
ach of these taks seprentely. setivity farecasting predicts

FutureHuman3D [2]

CG-HOI: Contact-Guided 3D Human-Object Interaction Generation
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Abstract

W propese CG-HOL the first method to addrexs the task
of generanng dymamic 31 human-object inseractions (HOIs)
from sext. We medel the motion of both haman and object
im an interdependent fashion, ax semantically rich uman
mation raeely happens in (selation without any inseractions
Our key insight is that explicitly modeling comtact hetween
the husssn boudy surface and obpeer geomenry cam be wsed as
strong proxy guidance, both during training and inference.
Using this gwidance to bridge human and object movion
sible
interaction sequences, where the kuman body and corre

enables generating move realistic and physically pl

spending object move in @ coherent manner. Our method
first learns to model human mosion. object mosion. and con
tact in a joint diffision process, inter-correlated Theovgh
crosy attention. We then leverage this learmed contact for
gudance during inference rynth realistic, coherent
HOIx. Extentive evaluation shows that owr joint contoct-
based human-object steraction appeoach penentes realissic
and physically plausible sequences, and we show two ap-

plications highlighting the capabilisies of our method. Con
dinioned on G given ebject Irajeciony, we can generase the

corresponding humas motion witheu! re training. demon
Hrsting strong haman-obyect inteniependency karming Ow
approach is alwo fexible, and can be applied to static real-
world 30 sceme scans

1. Introduction

Genceating humas motios sequences |s 3D is importsat for
miny real-world applications, ¢ g. efficiont realistic charac
ter animation. assistive robotic syslems, room layout plas
ning, or heman hehavior simalation. Cracially, human inter-
AcLon is interdependent with the obyecy(s) being interactod
with; the object structsre of  chalr or ball, for mstance, con
strainis the possibile buman motions with the object (e.g., it
ting, lifting), and the buman action ofies impacts the object
maxion (¢, sitting on & swivel chair, carryng a backpack).
Existing works typically focus solely oa penerating dy-
samic humans, and thereby dsregading their surroundings

(G-HOI 3]

[2] Diller, Christian, Thomas Funkhouser, and Angela Dai. "FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. 4

[3] Diller, Christian, and Angela Dai. "Cg-hoi: Contact-guided 3d human-object interaction generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.



3D Human Behavior Generation: Action & Interaction

Efficient Action Representation

Forecasting Characteristic 3D Poses of Human Actions

Christian Diller' Thomas Funkhouser’ Angcla Dai
ITechnical University of Munich  “Google
us s w 55

s A

{ ]
..

X £l
LY FAY

Abstract method, we construct a dataset of manuatly anmotated char

L. Introduction
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dicting the 3 pose of & huma
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Forecasting Chara&eﬁstic 3D Poses [1]

[1] Diller, Christian, Thomas Funkhouser, and Angela Dai. "Forecasting characteristic 3d poses of human actions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
[2] Diller, Christian, Thomas Funkhouser, and Angela Dai. "FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

[3] Diller, Christian, and Angela Dai. "Cg-hoi: Contact-guided 3d human-object interaction generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.



Forecasting Characteristic 3D
Poses of Human Actions

\K How to efficiently represent 3D human motion sequenc;././‘ \—5&)

Christian Diller Thomas Funkhouser  Angela Dai
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Time-Based Future Human Motion Prediction
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Joint Location

Forecasting Characteristic 3D Human Poses
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Task: Characteristic 3D Poses for Action Goals
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Dataset: Characteristic 3D Poses on GRAB [1]
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Original GRAB [1] Dataset 3D Skeleton Sequence

[1] Taheri, 0., Nima Ghorbani, Michael J. Black and Dimitrios Tzionas. “GRAB: A Dataset of Whole-Body Human Grasping of Objects.” ECCV (2020).




Dataset: Characteristic 3D Poses on Human3.6m[1]

]
, TI [”Phoning” ]
| Characteristic

Pose

Original Human3.6M [1] Dataset 3D Skeleton Sequence

[1] lonescu, Catalin, et al. "Human3. 6m: Large scale datasets and predictive methods for 3d human s onments." [EEE transaction analysis and machine intelligence 36.7 (2013): 1325-1339.




Method: Architecture
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Method: Autoregressive Prediction
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Method: Pose Refinement

* End-Effector Locations
 Bone-Lengths, as observed in input
* Joint angles, as observed in input
 Heatmap joint probability
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Learning Trajectory History Repeats
Input Dependencies [1] Itself [2] Ours Target
& o f
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[1] Mao, Wei, et al. "Learning trajectory dependencies for human motion prediction." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
[2] Mao, Wei, Miaomiao Liu, and Mathieu Salzmann. "History repeats itself: Human motion prediction via motion attention." European Conference on Computer Vision. Springer, Cham, 2020.
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Results: Mean Per-Joint Position Error
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Results: Quantitative

MPJPE = Mean Per-Joint Position Error

m Baseline[1] mBaseline[2] ®™mOQurs = NoRefinement m No Autoregression
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[1] Mao, Wei, et al. "Learning trajectory dependencies for human motion prediction." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.
[2] Mao, Wei, Miaomiao Liu, and Mathieu Salzmann. "History repeats itself: Human motion prediction via motion attention." European Conference on Computer Vision. Springer, Cham, 2020.
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Abstract method, we construct a dataset of manuatly anmotated char

L. Introduction

Future bumsan pose forecasting is fundimestal wwands 3
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Forecasting Chara&eﬁstic 3D Poses [1]

[1] Diller, Christian, Thomas Funkhouser, and Angela Dai. "Forecasting characteristic 3d poses of human actions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
[2] Diller, Christian, Thomas Funkhouser, and Angela Dai. "FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
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Complex Action Sequences
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Abstract 1. Tntroduction

We present a generative upprovch
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. The monitecing system thas also nesds 1o be able 10
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[1] Diller, Christian, Thomas Funkhouser, and Angela Dai. "Forecasting characteristic 3d poses of human actions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[2] Diller, Christian, Thomas Funkhouser, and Angela Dai. "FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024
[3] Diller, Christian, and Angela Dai. "Cg-hoi: Contact-guided 3d human-object interaction generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
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FutureHuman3D: Forecasting Complex Long-Term
3D Human Behavior from Video Observations

How can we learn complex long-term action sequences
with limited 3D data?
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Related Work: Action Forecasting
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Related Work: 3D Pose Forecasting
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Task: Future Actions & 3D Poses from 2D

2D RGB Images + Action Labels 3D Pose Sequence + Action Labels
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Data: Uncorrelated 2D and 3D Human Poses
3D Pose Data

2D Action Sequences

e Take
*  Wash
* Take
* Take
* Take
*  (lose
* Take

Take

Peel

Throw in Garbage
Cut

Add

Throw in Garbage

AMASS [1]

GRAB [2]

Human3.6m [3]

\
!
y S
e |
9 { \
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No correspondence

[1]1Mahmood, Naureen, et al. "AMASS: Archive of motion capture as surface shapes." Proceedings of the IEEE/CVF international conference on computer vision. 2019.
[3] lonescu, Catalin, et al. "Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments." IEEE transactions on pattern analysis and machine intelligence 36.7 (2013): 1325-1339.

[2] Taheri, Omid, et al. "GRAB: A dataset of whole-body h%ufr)lan grasping of objects."
European conference on computer vision. Springer, Cham, 2020.




Method: Architecture

Input Sequence Forecasted 3D Pose + Action
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Results: Qualitative 3D Pose & Action — Cooking
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Results: Qualitative 3D Pose & Action — Furniture Assembly
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Results: 3D Pose Forecasting — 2D Joint Error

Cooking Sequences IKEA Furniture Assembly
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RepNet[1]+ RepNet[1]+ RepNet[1]+ § Ours Ours (No
DLow[2] GSPS [3] STARS [4] Action Loss)
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DLow [2] GSPS [3] STARS [4] Action Loss)

[1] Wandt, Bastian, and Bodo Rosenhahn. "Repnet: Weakly supervised training of an adversarial reprojection network for 3d human pose estimation.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019. 30
[2] Yuan, Ye, and Kris Kitani. "Dlow: Diversifying latent flows for diverse human motion prediction." ECCV 2020. [4] Xu, Sirui, Yu-Xiong Wang, and Liang-Yan Gui. "Diverse Human Motion Prediction Guided by Multi-level Spatial-Temporal Anchors." ECCV 2022.
[3]1 Mao, Wei, Miaomiao Liu, and Mathieu Salzmann. "Generating Smooth Pose Sequences for Diverse Human Motion Prediction.” Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.



Results: Action Forecasting — Action Accuracy
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[1] Girdhar, Rohit, and Kristen Grauman. "Anticipative video transformer." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.
[2] Gong, Dayoung, et al. "Future transformer for long-term action anticipation." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2022.
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[1] Diller, Christian, Thomas Funkhouser, and Angela Dai. "Forecasting characteristic 3d poses of human actions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[2] Diller, Christian, Thomas Funkhouser, and Angela Dai. "FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024
[3] Diller, Christian, and Angela Dai. "Cg-hoi: Contact-guided 3d human-object interaction generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
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Human-0Object Interactions

CG-HOI: Contact-Guided 3D Human-Object Interaction Generation
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Abstract

We propase CG-HOL the first method to addrexs the task
of generanng dynamac 31) hamas-object inseractions (HOIs)
from sext. We mede ot hurmars aonel obyject
i an interdepende; mantically rich human
motion rarely happe thout any inseractions
Our key insight i that explicitly modeling contact benween
the hiewsan body surface and object geomeiry can be wedas 1, Introduction
strong praxy guidance, both during trsining and inference.
Using this gwidance 1o bridge human and object m
enabie alisiic and phsic
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worid 30 sceme scans.

Gemerating human motios sequences I 3D is kmportsat for
miny real-workd applications, e g. efficiont realistic charac
ter animation. assistive robotic syslems, room layout plas
ning, or haman behavior simalation. Cracially, human inter-
acton is interdependent with the obyecas) being interacicd
with; the object ssructsre of 2 chair er ball, for mstance, cos

strainis the possibile buman motions with the object (e.g., it
fle= impacts Se object
maxion (¢, sitting 0n 8 swh . carrymg a backpack)

c Existing works typically focus solely oa penerating dy-
and physically plausible sequences, and we show two ap-  samic humans, d Shereby disregading their surreundings

CG-HOI [3]

ting, lifting), and the buman

[1] Diller, Christian, Thomas Funkhouser, and Angela Dai. "Forecasting characteristic 3d poses of human actions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
[2] Diller, Christian, Thomas Funkhouser, and Angela Dai. "FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. 33

[3] Diller, Christian, and Angela Dai. "Cg-hoi: Contact-guided 3d human-object interaction generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.



CG-HOI: Contact-Guided 3D
Human-0bject Interaction Generation

How to model realistic
human-object interactions?
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Task: Joint Human-0Object Motion Generation
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Approach: Contact Modeling
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Method: Inference
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Results: Qualitative
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Results: Qualitative Comparison to Baseline MDM [1]

Condition MDM [1] Ours

[1] Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, Amit Haim Bermano. "Human Motion Diffusion Model." The Eleventh International Conference on Learning Representations . 2023.
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Results: Qualitative Comparison to Baseline InterDiff [1]

Condition InterDiff [1] Ours

[1] Xu, Sirui, et al. "Interdiff: Generating 3d human-object interactions with physics-informed diffusion." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.



Results: Ablation Study

Movea |
yogamat /

No Contact Modeling No Contact Guidance Ours (Full)
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Results: Quantitative — User Study

More Realistic Follows Text Better

MDM InterDiff MDM InterDiff

M Ours ~ Baseline ™ Ours ~ Baseline




Results: Quantitative

BEHAVE CHAIRS

Task Approach R-Prec. (top-3) 1 | FID | | Diversity — | MModality — || R-Prec. (top-3) t | FID | | Diversity — | MModality —

Real (human) 0.73 0.09 4.23 4.55 0.83 0.01 7.34 3.00
Text-Cond. | MDM [71] 0.52 4.54 5.44 5.12 0.72 5.99 6.83 3.45
Human InterDiff [84] 0.49 5.36 3.98 3.98 0.63 6.76 5.24 2.44
Only Ours 0.60 4.26 4.92 4.10 0.78 5.24 7.90 3.22

Real 0.81 0.17 6.80 6.24 0.87 0.02 9.91 6.12
Motion- InterDiff [84] 0.68 3.86 5.62 5.90 0.67 4.83 7.49 4.87
Cond. HOI | Ours 0.71 3.52 6.89 6.43 0.79 4.01 8.42 6.29
Text- MDM [71] 0.49 9:21 651 8.19 ;55 9.23 6.23 7.44
Cond. InterDiff [84] 0.53 8.70 3.85 4.23 0.69 7.53 5.23 4.63
HOI Ours 0.62 6.31 6.63 547 0.74 6.45 8.91 5.94
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Application: Object Trajectory Guidance

Carrya
backpackon
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Application: 3D Static Scene Population

Move the chair
backwards

Adjust the chair

Move the chair
sideways
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3D Human Behavior Generation: Action & Interaction

[1] Diller, Christian, Thomas Funkhouser, and Angela Dai. "Forecasting characteristic 3d poses of human actions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[2] Diller, Christian, Thomas Funkhouser, and Angela Dai. "FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

[3] Diller, Christian, and Angela Dai. "Cg-hoi: Contact-guided 3d human-object interaction generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Human-0Object Interactions

CG-HOI: Contact-Guided 3D Human-Object Interaction Generation

Christian Diller
Technical University of Munich

Angela Dai
Technical University of Munich
sngela.daiétum.de
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Abstract

We propase CG-HO, the firss method to address the task
of generaning dynamic 1) humas-cdject inseractions (HOIs)
from sext. We madel the motion of both humen and ebject
i an interdependent fashion, as semantically rich human
motion rarely happens in isolation without any inferactions.
Owr key insight is that explicitly modeling comtact between
the himan body surface and object geometry can be used as
strong proxy guidance, both during treining and inference.
Using this geidance 10 bridge human and object motion
enables generating move realistic and physically plausible
interaction sequences, where the human body end corre-
sponding object move in a coherent manser, Our method
first learns to modet human motio
tact in a joine diffision precess,

wion, and con-

of realisic, coberent
HOls. Extensive evaluar that our joins contacr-
based human-object inte nach generates realissic
and physically plawsible sequences, and we show two ap-

small uble

)

sext description and gives stathc cbject

the body mesh, closer contact
img HOls from text, we can also
8 static soene scans (boooes right).

plications hightighting the capabllisies of our method. Con
dirioved on @ given ebject trajectory, we can generate the
corresponding haman motion withou! re-training. demon-
strating strong human-object interdependency learsing. Our
approech is also flexible, and cen be applied o swatic real-
world 3D scene scans.

1. Introduction

Genersting human motics sequences in 3D is important for
many real-world applications, ¢.g. efficient realistic charac
ter animation, assistive robotic sysiems, room layout plan-
ning, or human behavior simalation. Crucially, human inter.
action is interdependent with the objeci(s) beisg interacted
with; the object structare of a chair ee ball, for instance, con
strains the possible human motions with the object (e.g., sit
ting. lifting), and the buman sction often impacts the object
mation (e.g., sitting o a swivel chair, carrying a backpack).

Existing works typicaly focus solely on generating dy
mamic humans, asd hereby disreganding their suroundings

CG-HOI [3]
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3D Human Behavior Generation: Action & Interaction

Efficient Action Representation

Forecasting Characteristic 3D Poses of Human Actions

Christian Diller' Thomas Funkbouser® Angela Dai’
"Technical University of Munich *Google
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Figare 1. For 3 reab-world 3 skeleton sogeence of  buman performisg 3 action, we frepose 10 forecat the semanscally mearingfel
chanscreristic M pose, repeeseating the action gosl for this soquonce. As inpet, we ke & short chscrvason of & sequence of Consecs
tive poses leading wp 1o the target chamcteristic pose. Thes, we fropose 3 take & goul-oviented spproach, feedicting the key momenes

characterizing fature hehanior, instend of predicting coatimeous motion, which cam occur at varying speeds with predictions more easily
diverging for leaper-torm (>13) predicions. We develop an asention-driven protubilistic 3ppraach 10 capeare the most likely modes of

powible fussee characterist: poses

Abstract

We propose the sask of forecasting charecteristic 3d
poses: from a short sequence observation of @ person,
predict a future 3d pose of that persom in a likely action:
defning, characieristic pose - for instance, from observing
@ person picking up an apple, predict the pose of the per
s0m eating the apple. Prior work om heman motion predic

tiom estimetes future poses @t fised ime intervels. Althovgh
easy to define. this frame-by-frame formukation confourds
temporal and intentional aspects of human action. Instead,
we define a semantically meaningful pose predicrion task
that decouples the predicted pose from time, taking inspirs:
tiom from goul directed behvioe To predict characterissic
pases, we propose a probabilistic approack thet models the
possible multi-modality in the distribution of likely char-
acteristic poses, We then sample fieture pose kyposheses
from the predicted distribution in an autoregressive fash
i0n 10 mode! dependencies between joinss. To evoliise our

method. we construct a dataset of manwally ansotated char
acteristic 3d poses. Owr experiments with this dasaset sug.
gest thar our proposed probabilistic approach owsperformes
state-of-the-art methods by 26% on average.

1. Introduction

Futore human pose forecasting is fundamental towards a
compeehensive understanding of human bebavior, and cos
sequently towards ackicving higher.level percepticn in ma
chine inleractions with bamans, such s aUIONOMESS Fobots
o vehicles. In fact, prediction is coasidered to play a fous-
dational part is ksselligeace [, 11, 15). In particalar, pre-
dicting the 3 pose of & human in the future lays & basis
for both seructural sad semantsc uaderstinding of heman
Behavior, and for an agest 1o take fine-grained anticipatory
action towards the forecasted future. For example, a roboric
surgical assistant shoald predict in advance where best 1o
plice & ool 10 assist the surgeoa’s Bext action, what seasor

Forecasting Characteristic 3D Poses

1

Complex Action Sequences

FutureHuman3D: Forecasting Complex Long-Term
3D Human Behavior from Video Observations

Christian Diller Thomas Funkhouser Angela Dai
Technical University of Munich Google Technical University of Munich

taput Inage Seqoence
with Action Labels

“change semperanre

Figure 1. We proposs a nevel pracrative approach o model kong-term futuse bumas tehavior by Joliely forecassing a sogeeace of coune
action latels and Sheir concrene realizations as 3D body poses. Fee beoud appiicalility, ou astoregressive mechod caly requires weak
sepervision and past cbservations s the form of 20 RGB video data, sopether with a database of uncoerciased I buman poses

Abstract 1. Introduction

Human-0Object Interactions

CG-HOI: Contact-Guided 3D Human-Object Interaction Generation

Christian Diller Angela Dai
Technical University of Munich Technical University of Munich
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Contact-Graided XD Hismsar-Object Interaction Synthesis from Text Appeation 1o Objects in Stasie 3D Scene Seass

Figure 1. We present an approsch 10 goserste sealissc 3D buman-object interacsons (HOIs ). from a sext description and gives static object
goomenry 10 be interacted with (Jeft). Our main insight is to expliciely model costact (vissalined as colors on the body mesh, closer contact

We present @ gemerarive approach to forecast long. term

fatwre human bekavior in 3D, requiring only weak super
vision from readily available 2D human oction deta. This
is @ fundamental task enabling many downstream applice
riows. The required grownd-ruk data is hard 1o caprere bn
3D (mocap suits, expensive setaps) but easy o acquire i
2D (simple RGB cameras). Thas, we design our method
10 anly require 2D RGB data while being able 10 generare
3D hueman metion sequences. We wse a differentiable 2D
projection scheme in an autoregressive manner for weak
supervision, and an adversarial loss for 3D regularization.
Oner methond predicts long and cemplex behavior sequences
(e.5 cooking, assembly) consisting of multiple sub-actions
We sackle this in @ semantically Aierarchical masner, joinly
prediciing Mgh-level coarse action kabels together with their
low-level five-gruined realizasions as characteristic 3D b
man pases. We observe that these two Gction represensations
are coupled in nature, and joint prediction benefits botk ac-
tion and pose forecasting. Owr experiments demonsirate
the complementary nature of joint action and 3D pose pre-
diction: owr joint approach outperforms each sask ireated

individually, emabies robust lomger-term sequence prediction,
and outperforms aliemative approvches o forecast actions
and characteristic 3D peses.

Prodicting future buman bebavior is fendamental to ma-
chine intelligence, with mamy applications in costeat cre
sion, robotics, mived reality, and more. For imtsace, &
monitoriag system might issue carly wamiags of potcatially
dangeroes behanviosr, and a robotic assistant can wse fore
casting 10 place wols at the right place and time they will
be needed i the future. Comader the specific scenario of
= assembly line monitcring sysiem deployed to issue carly
wamings of behurvior thas ceuld be barmfal in e near fuare
The sysicen needy 1 have & loag-term endentanding of the
fature. crabling it 10 forccast multiphe action steps abead so
thart it can act in time before 3 harmfel action occurs. How-
ever, simply understanding the nEAt action Seps on 3 bigh
Tevel is not sufficient: it must also reason sbost where the
action will occur. Actions such as “grab a tool” are likely
harmless whes perfoemed in 2 toolboy. they become danger
ous when dons Dext 10 a8 active table saw of mving rebot
arm. The moaitering system thas also nceds 1o be able to
reason aboet spacial relaions in 3D — for boi e locasion
s body pose of isvelved buman

To support these types of applications, we must address
twotasks: 1) forecasting loag-term acticn sequences, and 2)
predicting feture 3D baman poses. Prioe work has focwsed 0a
€ach of these tasks sepaeately: activity forecasting predices

in red). in tandem with human and cbject sequences, in a joint diffesion process. I adéiticn to syrehesizing HOls from text,
stxces conditionnd 08 pves byt Eajectones (p rght), and pencrate slcractions 18 st ens scins (botioes right).

systheuze bummss

Abstract

We propose OG-HOL the firss meshod 1o address the task
of generaning dynamic 1) humas-cdject inseractions (HOIs)
from sext. We madel the motion of both humen and ebject
i an interdependent fashion, as semantically rich human
motion rarely happens in isolation without any inferactions.
Our key insight is that explicitly modeling comtac berween
the human body suface and object geometry can be used as
strong proxy guidance, both during treining and inference.
Using this geidance 10 bridge human and object motion
enables generating move realistic and physically plausible
interaction sequences, where the human body end corre-
sponding object move in a coherent manser, Our method
first learns to modet human mation. object mosion, and con-
tact in a joine diffision precess, inter-correlated throwgh
cross-attention. We thew leverage this learned contact for
suidance during inference synthesis of realisic, coberent
HOIs. Extensive evaluation shows that our joins contact-
based human-object interaction approach generates realissic
and physically plawsible sequences, and we show 1eo ap-

e can also

plications hightighting the capabllisies of our method. Con
dirioved on @ given ebject trajectory, we can generate the
corresponding haman motion withou! re-training. demon-
strating strong human-object interdependency learsing. Our
approech is also flexible, and cen be applied o swatic real-
world 3D sceme scans

1. Introduction

Generating human motics sequences in 3D is important for
many real-world appiications, e.g. efficient realistic charac-
ter animanon, assistive fobotic sysiems, room Layout plan-
ning, or human behavior simalation. Crucially, human inter.
action is interdependent with the objeci(s) beisg interacted
with; the object structsre of & chair e bl for instance, con
strains the possible human motions with the object (e.g., sit
ting, liftieg), and the buman sction oftes impacts the object
mation (e.g., sitting o a swivel chair, carrying a backpack).

Existing works typicaly focus solely on generating dy-
samic humans, asd Geredy disregarding their surroundings

FutureHuinanBD [2]

CG-HOI [3]

[1] Diller, Christian, Thomas Funkhouser, and Angela Dai. "Forecasting characteristic 3d poses of human actions." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
[2] Diller, Christian, Thomas Funkhouser, and Angela Dai. "FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024. 49

[3] Diller, Christian, and Angela Dai. "Cg-hoi: Contact-guided 3d human-object interaction generation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.



Summary and Conclusion ﬁﬁ <
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* Predicting future characteristic 3D poses of human actions } {, ) £‘|
\ “Drink” . “Pour”
* Probabilistic approach for capturing the most likely future 3D action poses > 3
"’ ) | 5 . ?
e \ 4

* Forecasting complex long-term 3D human behavior from 2D

* Joint action and 3D pose forecasting of composite long-term behavior

* Contact-Guided 3D Human-Object Interactions

* Realistichuman-object interaction generation from text and geometry




Outlook: 3D Scene Understanding

Reconstruction [1] Semantic Instance Segmentation [2] Affordance Prediction [3]

[1] Dai, Angela, Christian Diller and Matthias NieBner. “SG-NN: Sparse Generative Neural Networks for Self-Supervised Scene Completion of RGB-D Scans.” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020): 846-855.
[2] Hou, Ji, Angela Dai and Matthias NieBner. “3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans.” 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019): 4416-4425. 51
[3] Savva, Manolis, Angel X. Chang, Pat Hanrahan, Matthew Fisher, and Matthias NieBner. "SceneGrok: Inferring action maps in 3D environments." ACM transactions on graphics (TOG) 33, no. 6 (2014): 1-10.



Outlook: Dynamic Human Interactions in 3D Scenes

A person sits down
and stretch out his legs

\ "

e ,
~ . Aperson walks forward slowly

The person walks forward from
the curtain to pick up his guitar.

The person cartwheels towards
the campfire from the table.

In-
&
Po-
Text-based motion and interaction [1] Zero-shot path-finding with large language models [2]
[1] Yi, Hongwei, et al. "Generating human interaction motions in scenes with text control.” European Conference on Computer Vision. Springer, Cham, 2024. 52

[2] Qu, Haoxuan, Ziyan Guo, and Jun Liu. "GPT-Connect: Interaction between Text-Driven Human Motion Generator and 3D Scenes in a Training-free Manner." arXiv preprint arXiv:2403.14947 (2024).
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