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LiDAR Scanning

• Sensing the environment

• Sparse point measurements

• Only partially visible objects

Motivation

3



Laser Scanning Motivation

• Precise point locations

• Scanline approach

• Requires controlled 

environment
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Problem Statement Motivation

Sparse and Partial Point Clouds

Dense Surface Meshes

3D Shape Completion
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3D Shape Completion from Sparse Point Clouds

• Background

• Data Generation 

• Network Architecture

• Evaluation Results
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Background
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Background

3D 
Representations

Regular Voxel 
Grids

Polygonal 
MeshesPoint Clouds

3D Shape Completion
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Background
3D Shape Completion

Direct

Optimization Database Symmetry

Data-Driven

Completion Method

3D CNN on Voxels 3D CNN on Points

Autoencoder Variational 
Autoencoder Autoregression

Directly on Points

Input Method

GAN
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PointNet
• Classification and Segmentation
• Operating directly on unstructured point clouds
• Uses symmetric max pooling operation

Background

32.C. R. Qi, H. Su, K. Mo, and L. J. Guibas. “PointNet - Deep Learning on Point Sets for 3D Classification and Segmentation.” In: CVPR (2017), pp. 77–85. 
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PointNet++
• Improvements by stacking multiple PointNets
• Captures local point neighborhoods

Background

49.C. R. Qi, L. Yi, H. Su, and L. J. Guibas. “PointNet++ - Deep Hierarchical Feature Learning on Point Sets in a Metric Space.” In: NIPS (2017). 
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3D Encoder Predictor CNN
• Learns shape completion with autoencoder-like architecture
• Operates on regular voxel grids

Background

A. Dai, C. R. Qi, and M. Nießner. “Shape Completion Using 3D-Encoder-Predictor CNNs and Shape Synthesis.” In: CVPR (2017), pp. 6545–6554. 12



Method Overview Method Overview

Input:
• Sparse and Partial Point 

Clouds
• Unstructured list of xyz

coordinates in 3D space

Output:
• Dense Surface Meshes

• Vertices and faces
• Unsigned Distance Field as 
intermediary representation
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Data Generation
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ModelNet40 Data Generation

• High-Quality 3D CAD models
• 40 object classes
• 9843 train and 2468 test models

66.Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. “3D ShapeNets - A deep representation for volumetric shapes.” In: CVPR (2015), pp. 1912–1920. 15



Trajectory Sampling Data Generation

1. Normalization to unit cube
2. Trajectory sampling with jitter
3. Virtual rendering from generated cameras

Augmentations: 6 trajectories and up to 6 rotations per object
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Virtual Rendering Data Generation

1. Virtual rendering from each camera
2. Backprojecting into common 3D space
3. Subsampling to get exactly 2048 points
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Data Formats Data Generation

• Input Data

• Partial Point Clouds: 2048 points

• Signed Distance Fields: 323 voxels

• Target Data

• Unsigned Distance Fields: 323 voxels

• Complete Point Cloud: 4096 points
2D slice through a distance field volume
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Network 
Architecture
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Distance Field Generation

• Ingesting 3D point cloud with 1D convolutional layers
• Symmetric Max Pooling layer
• Fully Connected layers on latent vector
• Reshape and 3D Transpose Convolutions for volume generation

Network Architecture
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• l2 Loss: Lacking Robustness

• l1 Loss: Lacking Stability

• Huber (smooth l1) Loss

Loss on Distance Fields Network Architecture
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Loss on Distance Fields Network Architecture

• Voxels far away contribute less to shape but influence loss more
• Truncation removes high-value voxels from volume
• Additional log scaling emphasizes changes in surface-near voxels
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Evaluation: Loss on Distance Fields Results
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Rotations Truncation and 
Log Scaling l1 loss Truncation and 

Log Scaling
l1 loss

1 No 0.016105 Yes 0.000881

3 No 0.016066 Yes 0.000996

6 No 0.016103 Yes 0.001123

Evaluating how truncation and logarithmic scaling impacts the resulting l1 distance



Design Studies Network Architecture

• Point Cloud Generation
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Evaluation: Point Cloud Generation Results
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Comparing accuracy and completeness across different number of rotational augmentations during training

• Accuracy: Percentage of points with distance to their ground-truth correspondence above a threshold
• Completeness: Percentage of points with distance to their prediction correspondence above a threshold

Rotations Accuracy Completeness

1 82.2% 79.2%

3 87.2% 69.3%

6 87.8% 67.1%



Design Studies Network Architecture

• Hybrid Decoder
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Evaluation: Hybrid Decoder Results
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Comparing the impact of using both distance field and point cloud decoders vs. only one of them



Design Studies Network Architecture

• Classification Pseudo-Loss
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Evaluation: Classification Results
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Evaluating how adding a classification branch impacts prediction performance

Decoder Classification 
Branch l1 loss Classification 

Branch
l1 loss

Distance Field No 0.000881 Yes 0.001272

Point Cloud No 82.2% / 79.2% Yes 75.8% / 65.1%



Design Studies

• Encoders

• PointNet

• PointNet++

• 3D-EPN

Design Studies
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Evaluation: Encoders Results
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Comparing the impact of using different encoders on completion performance

Encoder l1 loss
(1 rotation)

l1 loss
(3 rotations)

l1 loss
(6 rotations)

PointNet 0.001145 0.000854 0.001212

PointNet++ 0.001126 - -

Point Cloud 0.000881 0.000996 0.001123

3D-EPN 0.00967 0.000907 0.001150



Results
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Evaluation: Overall Results
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ResultsQualitative: Mesh

bed

airplane

guitar

cup
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ResultsQualitative: Mesh

bowl

bottle

sofa

lamp
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ResultsQualitative: Point Cloud

cone

vase

airplane

chair
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ResultsLimitations

Missing geometry for fine structures
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ResultsLimitations

Fused geometry for fine structures
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ResultsLimitations

Missing geometry for areas with little information
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Conclusion
• Taking sparse and partial point clouds as input

• Data-driven shape completion using an autoencoder-like architecture

• Outputting dense surface mesh
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Thank you

3D Shape Completion from Sparse Point Clouds
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